Diese Kategorie enthält 128 Beiträge auf 13 Seiten.
Aufatmen und Freude am Kosmodrom im kasachischen Baikonur, im Deutschen Zentrum für Luft- und Raumfahrt (DLR) in Bonn und im Max-Planck-Institut für Ornithologie (MPIO) in Radolfzell am Bodensee: eine russische Sojus 2-1A-Rakete ist am 13. Februar 2018 um 9.13 mitteleuropäischer Zeit (MEZ, 14.13 Uhr Ortszeit) mit der Antenne für das deutsch-russische Kooperationsprojekt ICARUS (International Cooperation for Animal Research Using Space) an Bord zur Internationalen Raumstation aufgebrochen und soll die ISS am 15. Februar 2018 um 11.45 Uhr MEZ erreichen. "Der russische Progress-Raumfrachter MS-08 hat etwa 2500 Kilogramm Gepäck an Bord, wovon auf ICARUS - das technisch modernste Projekt zur globalen Tierbeobachtung aus dem All - etwa 200 Kilo entfallen", erklärt Johannes Weppler, ICARUS-Projektleiter im DLR Raumfahrtmanagement in Bonn. "Wir sind sehr froh, dass ICARUS nach mehreren Jahren intensiver Vorbereitung in seine operationelle Phase tritt und die dafür notwendige Hardware - die Antenne und der On-Board-Computer - nun bald am Swesda-Modul im russischen Segment der Raumstation angekommen sind.“ Der Computer war bereits am 14. Oktober 2017 mit einer Sojus-Rakete zur ISS transportiert worden.
Weiterlesen: ICARUS-Antenne ist auf dem Weg zur Internationalen Raumstation
Netzwerke aus autonomen Satelliten, die miteinander kommunizieren können: so soll die Zukunft der Raumfahrt aussehen und in wichtigen Bereichen wie der Kommunikation, der Erdbeobachtung und der Erkundung ferner Planeten zum Einsatz kommen. Mit der Mission "S-NET"soll nun ein weltweit einmaliger Flugverband aus vier Kleinst-Satelliten neue Technologien hierfür im Weltall testen und deren Funktionsfähigkeit unter Beweis stellen. Am 1. Februar 2018 um 3.07 Uhr mitteleuropäischer Zeit (MEZ) ist eine russischen Soyuz-2-1a Fregat-M-Trägerrakete vom Weltraumbahnhof Vostochny gestartet und hat das Quartett auf seine Umlaufbahn im niedrigen Erdorbit gebracht. Die Technologiemission der TU Berlin wird vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) gefördert.
Ein Jahr lang lebte und arbeitete die Geophysikerin Christiane Heinicke mit fünf Kolleginnen und Kollegen unter extraterrestrischen Bedingungen. Sie teilten sich eine circa 100 Quadratmeter große Wohneinheit auf dem Vulkan Mauna Loa auf Hawaii. Nun werden die dort gesammelten Erfahrungen in ihr Projekt MaMBA (Moon and Mars Base Analog), welches von der Klaus Tschira Stiftung gefördert ist, einfließen: Am Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen konzipiert, designt und baut Christiane Heinicke ein Habitat für den Einsatz auf Mond oder Mars.
Weiterlesen: Wohnraum für zukünftige Mond- oder Mars-Missionen
Am 15. Dezember ist um 16.36 Uhr MEZ, (10.36 Uhr Ortszeit) die US-amerikanische Dragon-CRS-13-Kapsel mit einer Falcon-9-Rakete vom Weltraumbahnhof in Cape Canaveral (Florida) zur Internationalen Raumstation ISS gestartet. Mit an Bord waren drei Zellkultur-Experimente von Wissenschaftlern der Otto-von-Guericke-Universität Magdeburg sowie der Universität Hohenheim, die vom Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Bonn gefördert werden. Die biologischen Proben werden in Experimentcontainern in Smartphone-Größe auf der "STaARS 1"- Forschungsanlage im Destiny Modul der ISS installiert. Dort bleiben sie über einen Zeitraum von 30 Tagen in Schwerelosigkeit, bis sie Mitte Januar 2018 mit der Dragon-Kapsel zur Erde zurückkehren und anschließend im Labor untersucht werden.
Weiterlesen: Auf dem Weg zur ISS: Deutsche Experimente in Smartphone-Größe
Am 14. Juli 2017 sind um 8.36 Uhr mitteleuropäischer Sommerzeit (MESZ) die beiden deutschen Kleinsatelliten "Flying Laptop" und "TechnoSat" an Bord einer russischen Sojus-Rakete vom Weltraumbahnhof Baikonur erfolgreich gestartet. Die Entwicklung, der Bau und der Start von TechnoSat sowie der Start von Flying Laptop werden vom Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) gefördert. Die Forschungssatelliten sollen neue Technologien unter Weltraumbedingungen testen und sind gleichzeitig Ausbildungsmissionen. Denn die Satellitenprojekte wurden von Doktoranden entwickelt, gebaut und für ihren Flug in den Weltraum qualifiziert. Studierende haben dabei in Form von Abschlussarbeiten unterstützt. "Für uns ist die praxisnahe Ausbildung des Ingenieur-Nachwuchses ein wichtiger Teil dieser Kleinsatellitenmissionen. Ein weiterer ist die Technologieerprobung. Viele Hersteller - darunter auch Kleine und Mittlere Unternehmen (KMU) - möchten ihre Raumfahrttechnologie und Bestandteile für zukünftige Satelliten direkt im Orbit unter Weltraumbedingungen testen. Bis jetzt sind solche Missionen allerdings sehr kostspielig. Kleinsatelliten könnten hier eine Wende bringen", betont Christian Nitzschke, Programmleiter in der Abteilung Technik für Raumfahrtsysteme und Robotik im DLR-Raumfahrtmanagement, der für diese Missionen verantwortlich ist.
Weiterlesen: Die Kleinsatelliten "TechnoSat" und "Flying Laptop" starten erfolgreich in den Weltraum
Es sieht ganz einfach aus: Der Rover fährt zielstrebig zur Landefähre, entnimmt dort mit einem Greifarm eine Sensorbox aus der Ladebucht und bringt diese zügig zum vereinbarten Ablage-Ort. Dort beginnen dann die seismischen Messungen. Alles läuft dabei ohne menschliches Eingreifen ab, denn Rover, Lander und Sensorbox arbeiten autonom und effektiv ihren Auftrag ab. Dahinter steckt jedoch die Arbeit von fünf Jahren, in denen das Team der Helmholtz-Allianz ROBEX (Robotische Exploration unter Extrembedingungen) intensiv daran gearbeitet hat, die Vision der autonomen Planetenerkundung Wirklichkeit werden zu lassen. Auf dem sizilianischen Vulkan Ätna ist dies nun in der mondähnlichen Lava-Landschaft gelungen: "Wir konnten unter Beweis stellen, dass diese Technologien auch für zukünftige Explorationsmissionen eingesetzt werden können", sagt der stellvertretende Sprecher der ROBEX-Allianz, Dr. Armin Wedler vom Deutschen Zentrum für Luft- und Raumfahrt (DLR).
Weiterlesen: Mission ROBEX unter Mondbedingungen auf dem Vulkan Ätna durchgeführt
Die deutsche Satellitenkommunikations-Mission "Heinrich Hertz" erreicht nun ihre finale Phase: Am 28. Juni 2017 unterzeichneten Dr. Gerd Gruppe, Vorstand für das Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR) und Marco Fuchs, Vorstandsvorsitzender der Firma OHB System AG, den Vertrag über Herstellung, Test und Start des nationalen Satelliten. "Wenn die Mission "Heinrich Hertz" im Jahr 2021 startet, wird sie den Grundstein legen für die Sicherung der Zukunft der Satellitenkommunikation", betont Dr. Gruppe.
Weiterlesen: Deutsche Satellitenkommunikations-Mission "Heinrich Hertz" wird realisiert
Das Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR) und die Airbus Defence and Space GmbH haben am 17. Februar 2017 den Industrievertrag für die Konstruktions- und Bauphase des deutsch-französischen Klimasatelliten MERLIN (Methane Remote Sensing LIDAR Mission) geschlossen. Diese Kleinsatellitenmission soll ab 2021 die Methankonzentration in der Erdatmosphäre mit einer bislang unerreichten Genauigkeit messen und damit zur Ursachenforschung des Klimawandels beitragen.
Weiterlesen: Deutsch-französische Klimamission geht in die Umsetzungsphase
Eines der komplexesten Experimente, das je auf einer Forschungsrakete geflogen wurde: So könnte man das Experiment MAIUS 1 (Materiewellen-Interferometrie unter Schwerelosigkeit) beschreiben, das am 23. Januar 2017 um 3.30 Uhr mitteleuropäischer Zeit mit einer Forschungsrakete vom Raumfahrtzentrum Esrange bei Kiruna in Nordschweden ins Weltall gestartet ist. Während der etwa sechsminütigen Phase, in der während des Fluges Schwerelosigkeit herrscht, ist es deutschen Wissenschaftlern erstmalig gelungen, ein Bose-Einstein-Kondensat (BEK) im Weltraum zu erzeugen und für Interferometrie-Experimente zu nutzen. "Bose-Einstein-Kondensate entstehen, wenn ein Gas bis fast auf den absoluten Nullpunkt heruntergekühlt wird", sagt Rainer Forke vom Raumfahrtmanagement des Deutschen Zentrums für Luft- und Raumfahrt (DLR). "Nun sind wir glücklich, dass wir nachweisen konnten, dass die MAIUS-1-Anlage im Weltraum einwandfrei arbeitet. Während der Schwerelosigkeitsphase konnten rund 100 Einzelexperimente zu verschiedenen Aspekten der Materiewelleninterferometrie durchgeführt werden."
Weiterlesen: MAIUS 1: Erstes Bose-Einstein-Kondensat im All erzeugt
Als die ersten Bilder des SAFFIRE II-Experiments zur Verbrennung einer Plexiglasprobe an Bord des CYGNUS-Raumtransporters das Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) der Universität Bremen erreichen, macht sich große Erleichterung breit. Der Versuchsaufbau im Weltraum hat funktioniert: die Luftströmung setzte zum richtigen Zeitpunkt ein, der Heizdraht hat geschaltet und die Probe entzündet, nach dem Ausschalten des Zündungsvorgangs brannte die Probe zunächst nur sehr schwach weiter, erholte sich dann jedoch und entwickelte sich zu dem Feuer, dass es jetzt zu untersuchen gilt.