Logo

Erste Hinweise auf merkwürdige Quanteneigenschaften des leeren Raums gefunden?
VLT-Beobachtungen von Neutronensternen könnten 80 Jahre alte Vorhersage zum Vakuum bestätigen

Geschrieben am 04.12.2016 in Kategorie: Astronomie

Astronomen haben im Licht, das von einem ungewöhnlich dichten und stark magnetisierten Neutronenstern emittiert wird, möglicherweise die ersten Hinweise auf einen seltsamen Quanteneffekt gefunden, der in den 1930er Jahren zum ersten Mal vorhergesagt wurde. Die Polarisation des Lichts, das sie mit dem Very Large Telescope der ESO beobachteten, legt nahe, dass der leere Raum um den Neutronenstern einem Quanteneffekt unterliegt, den man als Vakuumdoppelbrechung bezeichnet.

Ein Team unter der Leitung von Roberto Mignani vom INAF in Mailand in Italien und der Universität Zielona Gora in Polen haben mit dem Very Large Telescope (VLT) am Paranal-Observatorium in Chile den Neutronenstern RXJ1856.5-3754 beobachtet, der etwa 400 Lichtjahre von der Erde entfernt ist.

Zwar zählt RXJ1856.5-3754 zu den Neutronensternen, die uns am nächsten sind, jedoch kann er aufgrund seiner geringen Leuchtkraft nur schwer im sichtbaren Licht beobachtet werden. Deshalb mussten Astronomen mit dem FORS2-Instrument am VLT bis an die Grenzen dessen gehen, was mit derzeitigen Technologien möglich ist.

Neutronensterne sind die sehr dichten Überreste der Kerne massereicher Sterne, die am Ende ihres Lebens als Supernovae explodiert sind — massereich bedeutet hierbei, dass der Stern vorher 10 mal massereicher als unsere Sonne war. Die verbliebenen Neutronensterne weisen sehr starke Magnetfelder auf, die milliardenfach stärker sind als das unserer Sonne und die äußere Oberfläche und Umgebung des Sterns durchdringen.

Diese Felder sind so stark, dass sie sogar die Eigenschaften des leeren Raums um den Stern beeinflussen. Normalerweise wird ein Vakuum als völlig leer angesehen, so dass sich das Licht, das es durchdringt, nicht verändern kann. In der Quantenelektrodynamik (QED), der Quantentheorie, die die Wechselwirkung zwischen Photonen des Lichts und geladenen Teilchen wie Elektronen beschreibt, ist der Raum jedoch voller virtueller Teilchen, die ständig entstehen und wieder verschwinden. Sehr starke magnetische Felder können daher den Raum so verändern, dass er die Polarisation des durch ihn hindurchtretendes Lichts beeinflusst.

Mignani erläutert: „Gemäß der QED verhält sich ein hochmagnetisiertes Vakuum für die Ausbreitung des Lichts wie ein Prisma, ein Effekt, der als Vakuumdoppelbrechung bekannt ist.

Unter den vielen Vorhersagen der QED fehlte der Vakuumdoppelbrechung bisher jedoch ein direkter experimenteller Nachweis. Seit seiner Vorhersage in einem Fachartikel von Werner Heisenberg (der durch die nach ihm benannte Unschärferelation berühmt wurde) und Hans Heinrich Euler vor 80 Jahren sind bisher alle Versuche gescheitert, den Effekt im Labor nachzuweisen.

Dieser Effekt kann nur in Gegenwart enorm starker Magnetfelder nachgewiesen werden, wie sie etwa um Neutronensterne zu finden sind. Das zeigt einmal mehr, dass Neutronensterne für die Erforschung der grundlegenden Naturgesetze von unschätzbarem Wert sind“, erläuttert  Roberto Turolla von der Universität Padua in Italien.

Nach gründlicher Auswertung der VLT-Daten konnten Mignani und sein Team lineare Polarisation nachweisen – in einem signifikanten Ausmaß von rund 16% – von der sie davon ausgehen, dass sie aufgrund des Verstärkungseffektes der Vakuumdoppelbrechung im Bereich des leeren Raums um RXJ1856.5-3754 auftritt.

Vincenzo Testa vom INAF im italienischen Rom äußert sich dazu wiefolgt: „Hierbei handelt es sich um das lichtschwächste Objekt, bei dem Polarisation je gemessen wurde. Es erforderte eines der größten und leistungsstärksten Teleskope der Welt, das VLT, sowie präzise Datenauswertungstechniken, um das Signal eines solch lichtschwachen Sterns messen zu können.

Unsere Modelle können die hohe lineare Polarisation, die wir mit dem VLT gemessen haben, nur schwer erklären, wenn die durch die QED prognostizierten vakuumdoppelbrechenden Effekte nicht berücksichtigt werden“, ergänzt Mignani.

Diese VLT-Beobachtungen unterstützen erstmals die Vorhersagen dieser Art von QED-Effekten, die sich in extrem starken Magnetfeldern ergeben“, fügt Silvia Zane vom UCL/MSSL in Großbritannien hinzu.

Mignani ist begeistert angesichts der weiteren Fortschritte, die mit moderneren Teleskopen auf diesem Gebiet erreicht werden könnten: „Polarisationsmessungen mit der nächsten Generation an Teleskopen, wie dem European Extremly Large Telescope der ESO, könnten eine entscheidende Rolle dabei spielen, die Effekte der Vakuumdoppelbrechung, die von der QED vorhergesagt werden, an vielen weiteren Neutronensternen zu untersuchen.

Diese Messung, die nun zum ersten Mal mit sichtbaren Licht gemacht wurde, ebnet auch den Weg zu ähnlichen Messungen, die im Wellenlängenbereich der Röntgenstrahlung durchgeführt werden sollen“, schließt Kinwah Wu vom UCL/MSSL in Großbritannien.

Quelle

ESO - Europäische Südsternwarte
Die "Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre" oder auch kurz "Europäische Südsternwarte" ist ein Forschungsinstitut mit verschiedenen Observatorien.

Webseite: https://www.eso.org

Die Polarisation des Lichts, das von einem Neutronenstern emittiert wird
Diese künstlerische Darstellung zeigt, wie das Licht, das von der Oberfläche eines stark magnetisierten Neutronensterns (links) kommt, auf seinem Weg zum Beobachter auf der Erde (rechts) linear polarisiert wird, sobald es sich dem Vakuumraum nahe des Sterns nähert. Die Polarisation des beobachteten Lichts im extrem starken Magnetfeld legt nahe, dass der leere Raum um den Neutronenstern einem Quanteneffekt unterliegt, der als Vakuumdoppelbrechung bekannt ist, einer Vorhersage der Quantenelektrodynamik (QED). Dieser Effekt wurde in den 1930er Jahren vorhergesagt, jedoch noch nie zuvor beobachtet. Die magnetischen und elektrischen Feldrichtungen der Lichtstrahlen sind durch rote und blaue Linien dargestellt. Modellsimulationen von Roberto Taverna von der Universität Padua in Italien und Denis Gonzalez Caniulef vom UCL/MSSL in Großbritannien zeigen, wie sie sich entlang einer bevorzugten Richtung ausrichten, sobald das Licht durch die Region um den Neutronenstern läuft. Indem sie sich ausrichten, wird das Licht polarisiert und diese Polarisation kann mit empfindlichen Instrumenten auf der Erde gemessen werden.
© ESO / L. Calçada
Weitwinkelaufnahme der Himmelsregion um den lichtschwachen Neutronenstern RX J1856.5-3754
Diese Weitwinkelaufnahme zeigt die Himmelsregion um den sehr lichtschwachen Neutronenstern RXJ1856.5-3754 im Sternbild Südliche Krone. Dieser Teil des Himmels enthält auch interessante Regionen dunkler und heller Nebligkeiten um den veränderlichen Stern R Coronae Australis (oben links) sowie den Kugelsternhaufen NGC 6723. Der Neutronenstern selbst ist zu lichtschwach, um hier erkennbar zu sein, liegt aber sehr nah an der Bildmitte.
© ESO / Digitized Sky Survey 2 / Acknowledgement: Davide De Martin
VLT-Aufnahme des Bereichs um den lichtschwachen Neutronenstern RX J1856.5-3754
Farb-Komposit-Aufnahme des Himmelsbereiches um den Neutronenstern RX J1856.5-3754 und des damit in Verbindung stehenden kegelförmigen Nebels. Die Aufnahme basiert auf einer Reihe von Belichtungen, die mit dem Instrument FORS2 bei VLT KUEYEN durch drei verschiedene optische Filter gewonnen wurden. Im unteren linken Dritten kann die Spur eines Asteroiden gesehen werden. RX J1856.5-3754 befindet sich genau in der Bildmitte.
© ESO